50 research outputs found

    Interleukin 6 plays a role in the migration of magnetically levitated mesenchymal stem cells spheroids

    Get PDF
    Mesenchymal stem cells (MSCs) reside quiescently within a specialised ‘niche’ environment in the bone marrow. However, following appropriate signalling cues, MSCs mobilise and migrate out from the niche, typically toward either sites of injury (a regenerative response) or toward primary tumours (an intrinsic homing response, which promotes MSCs as cellular vectors for therapeutic delivery). To date, very little is known about MSC mobilisation. By adopting a 3D MSC niche model, whereby MSC spheroids are cultured within a type I collagen gel, recent studies have highlighted interleukin-6 (IL-6) as a key cytokine involved in MSC migration. Herein, the ability of IL-6 to induce MSC migration was further investigated, and the key matrix metalloproteinases used to effect cell mobilisation were identified. Briefly, the impact of IL-6 on the MSC migration in a two-dimensional model systems was characterised—both visually using an Ibidi chemotaxis plate array (assessing for directional migration) and then via a standard 2D monolayer experiment, where cultured cells were challenged with IL-6 and extracted media tested using an Abcam Human MMP membrane antibody array. The 2D assay displayed a strong migratory response toward IL-6 and analysis of the membrane arrays data showed significant increases of several key MMPs. Both data sets indicated that IL-6 is important in MSC mobilisation and migration. We also investigated the impact of IL-6 induction on MSCs in 3D spheroid culture, serving as a simplistic model of the bone marrow niche, characterised by fluorescently tagged magnetic nanoparticles and identical membrane antibody arrays. An increase in MMP levels secreted by cells treated with 1 ng/mL IL-6 versus control conditions was noted in addition to migration of cells away from the central spheroid mass

    Osteogenic lineage restriction by osteoprogenitors cultured on nanometric grooved surfaces – the role of focal adhesion maturation

    Get PDF
    The differentiation of progenitor cells is dependent on more than biochemical signalling. Topographical cues in natural bone extracellular matrix guide cellular differentiation through the formation of focal adhesions, contact guidance, cytoskeletal rearrangement and ultimately gene expression. Osteoarthritis and a number of bone disorders present as growing challenges for our society. Hence, there is a need for next generation implantable devices to substitute for, or guide, bone repair in vivo. Cellular responses to nanometric topographical cues need to be better understood in vitro in order to ensure the effective and efficient integration and performance of these orthopaedic devices. In this study, the FDA approved plastic polycaprolactone, was embossed with nanometric grooves and the response of primary and immortalised osteoprogenitor cells observed. Nanometric groove dimensions were 240 nm or 540 nm deep and 12.5 μm wide. Cells cultured on test surfaces followed contact guidance along the length of groove edges, elongated along their major axis and showed nuclear distortion, they formed more focal complexes and a lower proportions of mature adhesions relative to planar controls. Down-regulation of the osteoblast marker genes RUNX2 and BMPR2 in primary and immortalised cells was observed on grooved substrates. Down-regulation appeared to directly correlate with focal adhesion maturation, indicating the involvement of ERK 1/2 negative feedback pathways following integrin mediated FAK activation

    Nacre Topography Produces Higher Crystallinity in Bone than Chemically Induced Osteogenesis

    Get PDF
    It is counter-intuitive that invertebrate shells can induce bone formation yet nacre, or mother of pearl, from marine shells is both osteoinductive and osteointegrative. Nacre is composed of aragonite (calcium carbonate) and induces production of vertebrate bone (calcium phosphate). Exploited by the Mayans for dental implants, this remarkable phenomenon has been confirmed in vitro and in vivo yet the characteristic of nacre that induces bone formation remains unknown. By isolating nacre topography from its inherent chemistry in the production of polycaprolactone (PCL) nacre replica, we show that, for mesenchymal stem cells, nacre topography is osteoinductive. Gene expression of specific bone marker proteins, osteopontin, osteocalcin, osteonectin and osterix are increased 10-, 2- 1.7- and 1.8-fold respectively when compared to planar PCL. Furthermore, we demonstrate that bone tissue that forms in response to the physical topographical features of nacre has higher crystallinity than bone formed in response to chemical cues with full width half maximum for PO4 3- Raman shift of 7.6±0.7 for mineral produced in response to nacre replica compared to a much broader 34.6±10.1 in response to standard osteoinductive medium. These differences in mineral product are underpinned by differences in cellular metabolism. This observation can be exploited in the design of bone therapies; a matter that is most pressing in light of a rapidly ageing human population. Aragonite and calcite are the two calcium carbonate polymorphs that constitute the shell of molluscan bivalves conferring strength and resilience due to the nano- and microstructural assembly of the overall architecture. A small percentage of the invertebrate shell constitute the organic matrix which is responsible for the intricate processes of nucleation, growth and inhibition of calcium carbonate crystals resulting in the well-defined shell structure. The discovery of fully integrated shell dental implants in Mayan skulls initiated a number of studies showing that nacre, or mother of pearl, the aragonite calcium carbonate polymorph derived from the pearl oyster Pinctada maxima has good osteointegrative properties in vivo. Further exploration of this phenomenon in human jaw reconstructions and sheep femur implants confirm the osteointegrative properties of invertebrate shells. In addition, nacre initiates osteogenic differentiation in mesenchymal stem cells (MSCs) in vitro. This observation has led to a number of studies in which nacre and its chemistry have been incorporated into the design of existing biomaterials to induce bone formation. MSCs can be induced into undergoing osteogenesis in vitro by the use of pre-formulated soluble factors in the culture media, chemically defined surfaces, substrate matrix elasticity and the surface topography of the substrate. These approaches induce osteogenesis when presented in isolation or in combination. When these cues are presented in combination, surface patterning plays an important role and topography can have a stronger influence on cell behaviour when presented with effective surface chemistries. In vertebrate and invertebrate systems, the main requisites for forming hard tissue or biomineral structures are calcium phosphate and calcium carbonate respectively, both of which are assembled in a variety of ways generating an incredible amount of structural diversity. This juxtaposition of phosphate and carbonate is described as the “Bone-Shell Divide”. It is intriguing that mammalian cells respond to mineral on the shell side of the Bone-Shell Divide and this begs questions: which feature of nacre elicits this response and, in transcending the Bone-Shell Divide, do MSCs produce bone of similar or superior characteristics to that induced by other means? Addressing these questions has important implications in tissue engineering and biomaterial applications, especially with regards to orthopaedic applications where critical sized defects in trauma and reconstructive surgery demand large areas of intact bone usually acquired by creating a secondary injury site. By isolating the topographical features of nacre from its inherent chemistry, we show that the osteoinductive properties of nacre arise from the patterning of the surface presented to MSCs. Importantly, separating nacre topography from its inherent chemistry enhances the osteogenic response. In this report we dissect out the contribution of topography to nacre bioactivit

    Continuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chip

    Get PDF
    Engineering three-dimensional (3D) scaffolds with in vivo like architecture and function has shown great potential for tissue regeneration. Here we developed a facile microfluidic-based strategy for the continuous fabrication of cell-laden microfibers with hierarchically organized architecture. We show that photolithographically fabricated microfluidic devices offer a simple and reliable way to create anatomically inspired complex structures. Furthermore, the use of photo-cross-linkable methacrylated alginate allows modulation of both the mechanical properties and biological activity of the hydrogels for targeted applications. Via this approach, multilayered hollow microfibers were continuously fabricated, which can be easily assembled in situ, using 3D printing, into a larger, tissue-like construct. Importantly, this biomimetic approach promoted the development of phenotypical functions of the target tissue. As a model to engineer a complex tissue construct, osteon-like fiber was biomimetically engineered, and enhanced vasculogenic and osteogenic expression were observed in the encapsulated human umbilical cord vein endothelial cells and osteoblast-like MG63 cells respectively within the osteon fibers. The capability of this approach to create functional building blocks will be advantageous for bottom-up regeneration of complex, large tissue defects and, more broadly, will benefit a variety of applications in tissue engineering and biomedical research

    Dynamically modulated core-shell microfibers to study the effect of depth sensing of matrix stiffness on stem cell fate

    Get PDF
    It is well known that extracellular matrix stiffness can affect cell fate and change dynamically during many biological processes. Existing experimental means for in situ matrix stiffness modulation often alters its structure, which could induce additional undesirable effects on cells. Inspired by the phenomenon of depth sensing by cells, we introduce here core–shell microfibers with a thin collagen core for cell growth and an alginate shell that can be dynamically stiffened to deliver mechanical stimuli. This allows for the maintenance of biochemical properties and structure of the surrounding microenvironment, while dynamically modulating the effective modulus “felt” by cells. We show that simple addition of Sr2+ in media can easily increase the stiffness of initially Ca2+ cross-linked alginate shells. Thus, despite the low stiffness of collagen cores (<5 kPa), the effective modulus of the matrix “felt” by cells are substantially higher, which promotes osteogenesis differentiation of human mesenchymal stem cells. We show this effect is more prominent in the stiffening microfiber compared to a static microfiber control. This approach provides a versatile platform to independently and dynamically modulate cellular microenvironments with desirable biochemical, physical, and mechanical stimuli without an unintended interplay of effects, facilitating investigations of a wide range of dynamic cellular processes

    Label-free segmentation of co-cultured cells on a nanotopographical gradient

    Get PDF
    The function and fate of cells is influenced by many different factors, one of which is surface topography of the support culture substrate. Systematic studies of nanotopography and cell response have typically been limited to single cell types and a small set of topographical variations. Here, we show a radical expansion of experimental throughput using automated detection, measurement, and classification of co-cultured cells on a nanopillar array where feature height changes continuously from planar to 250 nm over 9 mm. Individual cells are identified and characterized by more than 200 descriptors, which are used to construct a set of rules for label-free segmentation into individual cell types. Using this approach we can achieve label-free segmentation with 84% confidence across large image data sets and suggest optimized surface parameters for nanostructuring of implant devices such as vascular stents

    Seagrass restoration is possible: insights and lessons from Australia and New Zealand

    Get PDF
    Seagrasses are important marine ecosystems situated throughout the world's coastlines. They are facing declines around the world due to global and local threats such as rising ocean temperatures, coastal development and pollution from sewage outfalls and agriculture. Efforts have been made to reduce seagrass loss through reducing local and regional stressors, and through active restoration. Seagrass restoration is a rapidly maturing discipline, but improved restoration practices are needed to enhance the success of future programs. Major gaps in knowledge remain, however, prior research efforts have provided valuable insights into factors influencing the outcomes of restoration and there are now several examples of successful large-scale restoration programs. A variety of tools and techniques have recently been developed that will improve the efficiency, cost effectiveness, and scalability of restoration programs. This review describes several restoration successes in Australia and New Zealand, with a focus on emerging techniques for restoration, key considerations for future programs, and highlights the benefits of increased collaboration, Traditional Owner (First Nation) and stakeholder engagement. Combined, these lessons and emerging approaches show that seagrass restoration is possible, and efforts should be directed at upscaling seagrass restoration into the future. This is critical for the future conservation of this important ecosystem and the ecological and coastal communities they support

    Seagrass restoration is possible:Insights and lessons from Australia and New Zealand

    Get PDF
    Seagrasses are important marine ecosystems situated throughout the world’s coastlines. They are facing declines around the world due to global and local threats such as rising ocean temperatures, coastal development and pollution from sewage outfalls and agriculture. Efforts have been made to reduce seagrass loss through reducing local and regional stressors, and through active restoration. Seagrass restoration is a rapidly maturing discipline, but improved restoration practices are needed to enhance the success of future programs. Major gaps in knowledge remain, however, prior research efforts have provided valuable insights into factors influencing the outcomes of restoration and there are now several examples of successful large-scale restoration programs. A variety of tools and techniques have recently been developed that will improve the efficiency, cost effectiveness, and scalability of restoration programs. This review describes several restoration successes in Australia and New Zealand, with a focus on emerging techniques for restoration, key considerations for future programs, and highlights the benefits of increased collaboration, Traditional Owner (First Nation) and stakeholder engagement. Combined, these lessons and emerging approaches show that seagrass restoration is possible, and efforts should be directed at upscaling seagrass restoration into the future. This is critical for the future conservation of this important ecosystem and the ecological and coastal communities they support

    Rethinking energy, climate and security: a critical analysis of energy security in the US

    Get PDF
    Understanding the complicated relationship between energy, climate and security is vital both to the study of international relations and to ensure the continued survival of a world increasingly threatened by environmental change. Climate change is largely caused by burning fossil fuels for energy, but while discussions on the climate consider the role of energy, energy security debates largely overlook climate concerns. This article traces the separation between energy and climate through an analysis of US energy security discourse and policy. It shows that energy security is continually constructed as national security, which enables very particular policy choices and prioritises it above climate concerns. Thus, in many cases, policies undertaken in the name of energy security contribute directly to climate insecurity. The article argues that the failure to consider securing the climate as inherently linked to energy security is not just problematic, but, given global warming, potentially harmful. Consequently, any approach to dealing with climate change has to begin by rethinking energy security and security more broadly, as national (energy) security politics no longer provides security in any meaningful sense

    Border Insecurity: Reading Transnational Environments in Jim Lynch’s Border Songs

    Get PDF
    This article applies an eco-critical approach to contemporary American fiction about the Canada-US border, examining Jim Lynch’s portrayal of the British Columbia-Washington borderlands in his 2009 novel Border Songs. It argues that studying transnational environmental actors in border texts—in this case, marijuana, human migrants, and migratory birds—helps illuminate the contingency of political boundaries, problems of scale, and discourses of risk and security in cross-border regions after 9/11. Further, it suggests that widening the analysis of trans-border activity to include environmental phenomena productively troubles concepts of nature and regional belonging in an era of climate change and economic globalization. Cet article propose une lecture écocritique de la fiction étatsunienne contemporaine portant sur la frontière entre le Canada et les États-Unis, en étudiant le portrait donné par Jim Lynch de la région frontalière entre la Colombie-Britannique et Washington dans son roman Border Songs, paru en 2009. L’article soutient que l’étude, dans les textes sur la frontière, des acteurs environnementaux transnationaux – dans ce cas-ci, la marijuana, les migrants humains et les oiseaux migratoires – jette un jour nouveau sur la contingence des limites territoriales politiques, des problèmes d’échelle et des discours sur le risque et la sécurité des régions transfrontalières après les évènements du 11 septembre 2001. Il suggère également qu’en élargissant l’analyse de l’activité transfrontalière pour y inclure les phénomènes environnementaux, on brouille de façon productive les concepts de nature et d’appartenance régionale d’une époque marquée par les changements climatiques et la mondialisation de l’économie
    corecore